Iklan Responsive

CONTOH SOAL LUAS DAN KELILING BANGUN DATAR BESERTA JAWABANNYA

Tutorial-informasi.net dalam kesempatan kali ini akan menghadirkan suatu utama duduk perkara dalam mata pelajaran matematika menggunakan konsentrasi dalam perkara Bangun Datar. Pembahasan kita menitik beratkan pada rumus luas serta keliling suatu bangun datar. Kita jua menyediakan model soal dari suatu luas serta keliling bangun datar yang disertai menggunakan kunci jawaban atau pembahasannya.

Bangun datar adalah suatu bentuk yang mempunyai 2 dimensi, lantaran bentuknya hanya tergambar dalam kordinat sumbu x dan y saja.
Rumus Luas dan Keliling  berdasarkan suatu bangun ruang yg akan dibahas meliputi:
  • Persegi Panjang
  • Bujur Sangkar (Persegi)
  • Segitiga
  • Lingkaran
  • Belah Ketupat
  • Layang-Layang

1. Persegi Panjang

Persegi Panjang merupakan bangun datar yg mempunyai 2 pasang rusuk  yang masing-masing sama panjang serta sejajar dengan pasangannya, dimana rusuk terpanjang dianggap sebagai panjang (p) serta rusuk terpendek diklaim menjadi lebar (l).

Dengan demikian mampu dikatakan bahwa Persegi Panjang mempunyai 2 (2) sisi panjang yang sama besar dan dua (dua) sisi lebar yang sama besar . Selain itu, keempat sudut berdasarkan Persegi Panjang masing-masing mempunyai besar 90o , sehingga semua sudut dipercaya sudut siku-siku.

Rumus Luas Persegi Panjang

Luas Persegi Panjang = p x lDimana : p = panjang l = lebar

Rumus Keliling Persegi Panjang

Keliling Persegi Panjang = 2p + 2l = 2x(p+l)

Latihan Soal

Perhatikan Gambar Persegi Panjang dibawah ini
Persegi Panjang ABCD diatas memiliki lebar lima centimeter serta panjang 8 cm, tentukan,
a. Luas Persegi Panjang ABCD
b. Keliling Persegi Panjang ABCD

Pembahasan
a. Luas Persegi Panjang ABCD = p x l = 8 x 5 = 40 cm2 
Jadi luas Persegi Panjang = 40 cm2
b. Keliling Persegi Panjang ABCD = 2(p + l) = 2(8 + 5) = 26 centimeter 
Jadi Keliling Persegi Panjang = 26 cm

2. Bujur Sangkar atau Persegi

Persegi atau Bujur Sangkar adalah suatu bangun datar yang memiliki empat buah sisi yang sama panjang dan keempat sudutnya siku – siku.

Rumus Luas Persegi

Rumus Luas Persegi = s x sDimana :s = sisi 

Rumus Keliling Persegi

Rumus Keliling Persegi = 4 x s 


Latihan Soal 

Sebuah bujur sangkar atau persegi mempunyai sisi 5 centimeter misalnya gambar dibawah ini :
Tentukan:
a. Luas Persegi
b. Keliling Persegi

Pembahasan
a. Luas Persegi = s x s = 5 x 5 = 25 cm2 
Jadi Luas Persegi = 25 cm2
b. Keliling Persegi = 4 x s = 4 x 5 = 20 centimeter 
Jadi Keliling Persegi = 20 cm

3. Segitiga

Segitiga merupakan suatu bangun yg mempunyai 3 buah sisi, gambar diatas sisi-sisinya merupakan : a, b dan c. Sisi a dianggap sebagai alas. Terdapat 3 butir jenis segitiga, yaitu :
  • Segitiga siku-siku, galat satu sisi menciptakan sudut 90o
  • Segitiga sama kaki, mempunyai 2 sisi yg sama panjang
  • Segitiga sama sisi, ketiga sisinya sama panjang

Rumus Luas Segitiga

Luas Segitiga = ½ x a x t Dimana : a = alas t = tinggi 

Rumus Keliling Segitiga

Keliling Segitiga = Sisi + Sisi + Sisi = a + b + c 

Latihan Soal

Perhatikan gambar segitiga dibawa ini :
Tentukan :
a. Luas Segitiga
b. Keliling Segitiga

Pembahasan
a. Karena ∠BAC = 90° keliru satu kaki sudutnya sanggup dijadikan tinggi atau alas, maka Luas Segitiga ABC = ½ x alas x tinggi Luas Segitiga ABC = ½ x AB x AC Luas Segitiga ABC = ½ x 4 centimeter x 3 centimeter Luas Segitiga ABC = 6 cm2
Jadi Luas Segitiga = 6 cm2
b. Keliling Segitiga ABC = Sisi AB + Sisi BC + Sisi CA = 4 centimeter + 5 centimeter + 3 centimeter = 12 centimeter 
Jadi Keliling Segitiga = 12 cm

4. Lingkaran


Lingkaran adalah bangun datar dimana setiap titik-titik dalam kelilingnya memiliki jeda yg sama menurut pusatnya. Jarak ini disebut jari-jari (r) lingkaran. Ruas yang melintasi pusat menurut suatu titik keliling ke satu titik keliling lain diklaim diameter.


Rumus Luas Lingkaran

Luas Lingkaran = phi x jari-jari x jari-jari = π x r x rDimana : π = nilai konstanta = 22/7 = 3.14 r = jari-jari

Rumus Keliling Lingkaran

Keliling Lingkaran = 2 x π x r = π x d

Latihan Soal

Perhatikan gambar bundar dibawah ini :

Tentukan
a. Luas Lingkaran
b. Keliling Lingkaran

Pembahasan
a. Luas Lingkaran = π x r x r = 22/7 x 7 x 7 = 154 cm2
Jadi Luas Lingkaran = 154 cm2
b. Keliling Lingkaran = 2 x π x r = 2 x 22/7 x 7 = 44 cm
Jadi Keliling Lingkaran = 44 cm

5. Belah Ketupat


Belah Ketupat merupakan suatu bangun datar yg mempunyai empat butir sisi yang sama panjang, namuni ke-empat sudutnya tidak siku-siku. Sehingga bangun datar ini mempunyai dua diagonal (d) yg ke 2 diagonalnya nir sama panjang.

Rumus Luas Belah Ketupat

Luas Belah Ketupat = ½ x diagonal1 x diagonal2 = ½ x d1 x d2

Rumus Keliling Belah Ketupat

Keliling Belah Ketupat = Sisi + Sisi +Sisi + Sisi = 4 x sisi


Latihan Soal

Perhatikan gambar belah ketupat dibawah ini :

Tentukan
a. Luas Belah Ketupat
b. Keliling Belah Ketupat

Pembahasan
a. Luas Belah Ketupat = ½ x d1 x d2 = ½ x 12 x 16 = 96 cm2
Jadi Luas Belah Ketupat 96 cm2
b. Keliling Belah Ketupat = 4 x Sisi = 4 x 10 centimeter = 40 cm
Jadi Keliling Belah Ketupat 40 cm

6. Layang-Layang

Layang layang  merupakan bangun datar yang memiliki sepasang sisi yg sama panjang. Jika kita lihat masih ada 2 butir sisi a serta 2 buah sisi b. Sisi-sisi tersebutlah yang dikatakan memeliki sepasang sisi yg sama panjang. Bangun datar ini juga memiliki 2 diagonal yang saling berpotongan.

Rumus Luas Layang-Layang

Luas Layang-Layang = ½ x d1 x d2Dimana: d1 = diagonal pertama d2 = diagonal kedua

Rumus Keliling Layang-Layang

Keliling Layang-Layang = 2 x ( sisi a + sisi b)

Latihan Soal

Perhatikan gambar layang-layang dibawah ini :
Tentukan
a. Luas Layang-Layang
b. Keliling Layang-Layang
Pembahasan
a. Luas layang-layang = ½ x d1 x d2 = ½ x 15 x 30 = 225 cm2
Jadi Luas Layang-Layang merupakan 225 cm2
Keliling layang layang ABCD = 2 x ( sisi a + sisi b) = 2 x (12+ 22) = 68 cm
Jadi Keliling Layang-Layang adalah 68 cm

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel